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ON THE SOLUTION OF OPTIMIZATION PRO3L~~S WITH CONSTRAINTS* 

S.V. SHAKHVERDIAN 

In the development of the method of integral penalty functions methods are proposed 
for solving optimization problems for dynamic systems with high-order constraintson 
the phase coordinates, Necessary optimality conditions in the form of a maximum 
principle are obtained for optimization problems with constraints of different forms 
on the control rate. 

At the present time one of the basic methods for solving optimization problems fordynamic 
systems with constraints on the phase coordinates is the method of integral penalty functions, 
which, for example, leads to the adding on of the integral /l-3/ 

(0.1) 

to the performance 
I is the system's 
period. Note that 

index in order to take into account inequalities of type g(z,t) go. Here 
state vector, K is the penalty coefficient, T is the end of the control 
the optimization problem for dynamic systems with constraints on the phase 

coordinates has not been solved in the general case by means of introducing integral (0.1). 
This is connected with the fact that at the instant ti a phase trajectory reaches the boundary 
of the admissible domain the derivative of the integrand in (0.1) with respect to the phase 
coordinates equals zero, by virtue of which the adjoint variables of the Hamiltonian system 
are always continuous. Meanwhile it is known that in the general case these variables must 
undergo discontinuities at instant tl. /4-6/, in particular, when the order of the constraint 
g&t)<0 is higher than first. (Here and everywhere below, by the order of a constraint is 
meant the order of the smallest time derivative of g&z) containing the control parameter). In 
addition, and this is more important, the direct inclusion of g(x,t) in any form in the target 
functional does not ensure that the phase trajectories lie in the admissible domain in the 
general case, i.e., the constraint g(z,t)<O is not sustained; this will be shown later. If the 
constraint g(s,r)<O is taken into account by adding on the integral 

i 
aY a, Y=y~+g(z,t)=O (0.2) 

to the performance index (a is a Lagrange multiplier , g is the additional control parameter), 
then it can be proved that the method of integral penalty functions is equivalenttothemethod 
based on the direct introduction of g&t) into the form (O-2), called the multiplier method. 
(Two methods are said to be equivalent if the solution sets obtained by their use either co- 
incide or are both empty]. As a matter of fact, from the extremum of the target functional 
with respect to II follows a = 0 on Q. = (t: E fg) = 0), a # 0 on Q1. = {r: I (g) = if. Therefore, the 
equality 

j,Y,=j czE(g)gdt=O 

is valid. 
0 

Consequently 
0 

T 

-+K 5 E(g)g*dt=O 
0 
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whence u=lIrKg as g-0, which proves the equivalence of the two methods. The optimal control 
problem with a constraint of form (~‘1 <a which is analyzed in the present paper togetherwith 
others, was studied in /7/, where U' is the rate of change of the scalar control ZL and a is a 
prescribed number. The constraint Iu'I<a was taken into account in /7/ by introducing 11 among 
the phase coordinates and using IL' as the control parameter. The solution obtained in /7/ is 
incomplete since from it does not follow the solution inside the admissible domain of varia- 
tion of 11 and u'. Methods are proposed below for solving the optimization problems for dynamic 
systems with constraints on the phase coordinates and on the control rate, that are free of 
the above-mentioned defects. 

1. Problem with phase constraints. For simplicity of exposition we assume that 
the phase trajectory reaches the admissible domain's boundary just once and remains onitover 
the interval It,,&1 and that there is only one pth-order constraint of type g (5, 1) .< 0. Under 
these assumptions we consider the standard optimal control: minimize 

under the constraints 

I = j fo (x,11, t) dt (1.1) 
0 

5’ = f (5, u, t), 5 (0) = x0, 5 (T) = XT (1.2) 

u (t) E: u = {u: g (u) < 0) (1.3) 

x (t) E R = {I: g (r, t) < 0) (1.4) 

where x is an n-dimensional continuous phase vector having continuous derivativeswithrespect 
to t everywhere except at a finite number of points, u is an m-dimensional piecewise-contin- 
uous control vector, 4 is, in the general case, a n-dimensional function on u, continuous 
and continuously differentiable with respect to u, nf 2m, g is a scalar function on R x U, 
continous and continuously differentiable up to order p with respect to x and U, and f is an 

n -dimensional vector-valued function. The functions f. and f are assumed continuous and 
continuously differentiable with respect to r and ZL on R x ill. 

To prove the necessity of introducing tangential constraints /5/ independently of the 
method of accounting for g&t) = 0 on Ql, as well as the assertion that the direct inclus- 
ion of only g(s,t) in any form in the target functional does not ensure constraint (1.4), we 
consider the method of the extended phase space. It is based cn augmenting (1.2) with the 
system 

2y,y,'-yy,=o, Y,'-yy,=o,..., Y,'+g+)(z,Wt)=O (1.5) 

with right end conditions 

[y,2 + g (2, QIT = 0, . . ., [yp + g!P-l) (I, t)lT = 0 (1.6) 

The solution of system (1.5) with conditions (1.6) has the form /8/ 

Y,2+g(z,t)=0, yjrl+g(j)(5,t)=0, g(j)-djgldt’, i=l,..., p--l (1.7) 

From (1.7) we see that if y,(t)is a real variable everywhere on 10, 2'1, we can ensure the ful- 
fillment of the condition g(s,t)<O on IO, T] by adding on system (1.5) with condition (1.6) 
to system (1.2). However, from (1.7) it does not follow that 

y,2 (t) > 0, vt E LO, Tl 
Consequently, as a result of the introduction of (1.5) with (1.6) the inequality g(m,t) <O 
cannot be observed in the general case. 

From (1.5) we see that for the equality yr(t) = g(z,t)= 0 to hold on [tr, t,l it is neces- 
sary and sufficient to ensure the fulfillment of the following conditions: 

or 

y*‘(t)=O, sEM={l,..., p); yj(t,)=O, i=i,..., p 

g’“’ (5, U, t) = 0, s E M , G (G h) = k (5, h), g”’ CT h) 7. . ., &P-l) (5, &)I = 0 

a@) (I, u, t) = 0, if sEM\p 
au +O, if S=p 

(1.8) 



Optimization problems with constraints 617 

Note that the solving of problem (l.l)- (1.4) with the introduction of system (1.5) and con- 
dition (1.6) is essentially equivalent to the solving of problem (l.l)- (1.3) with (O.Z), and, 
consequently, with (0.1). Thus, the methods of integral penalty functions, of multipliers, 
and of the extended phase space are equivalent, and to take (1.4) into account it is necessary 
to introduce the second condition of (1.8) into any of them. 

Method of integral penalty functions. On the strength of the above the original 
problem (l.l)- (1.4) must be replaced by the following one: minimize (1.1) under constraints 

(1.2), (1.3) and (1.8). If the method of integral penalty functions is appliedtothisproblem, 
then the penalty function must be introduced with the aid of the following equationwithbound- 
ary conditions 

(1.9) 

T 

&+l (0) = 0, x*+1 (T) = -+ s E (g) (t?v & = 0 
II 

(1.10) 

where E(g) is defined as in (0.1). It is evident that to account for (1.4) it is necessary 
to bring into consideration, besides (1.9) with (1.101, the second condition in (1.8), since 
independently of the means of accounting for g”)(z,u, t) = 0 the condition G(z,t,) = 0 must al- 
ways be fulfilled. 

We denote 
(1.11) 

‘pt = q1 (u) + ui2 = 0, i = 1, . . ., n (1.12) 

where vi is an additional control parameter enabling us to allow for (1.3) in the form of the 
equality (1.121. Then problem (l.l)-(1.4) can be stated thus: it is necessary tofindvector- 
valued functions u and v which minimize 

z* = z + hG' (z, t) (1.13) 

under constraints (1.2) and (1.9)-(1.121, where h is a p-dimensional row vector and G'is a 
p -dimensional column vector; the prime denotes transposition. The Hamiltonian for this 

problem is 
H = JPP + v'p (1.14) 

P = (fo, . ’ .* fn+A cp = (cpl, . . .t cplc), *,” = ($0, . . ., $n+J 
v = (VI. . . .( vn) 

where qp" is an n+ Z-dimensional adjoint vector and vis a s-dimensional vector-valued 
Lagrange multiplier. 

The system adjoint to (1.2), (1.9) and (1.11 can be written, using the Hamiltonian, as 

$0' = 0, $’ = -maxi, qn+[ = 0, i = 1, . . ., n (1.15) 

From the maximum condition for (1.14) we have 

(1.16) 

From (1.17) follows 

azztav = vu = 0 (1.17) 

v=o, v#O;v#O, v=o;v=o, v=o (1.18) 

Conditions (1.18) are essentially weak, which is due to the reduction of inequality (1.3) to 
equality (1.12). As a rule, because of the weakness of conditions (1.18) a cycling of the 
iteration procedure arises; therefore, (1.18) need strengthening. In this connection the 
validity of the conditions 

v>o, v=o; v=o, v#O (1.19) 

can be proved by use of the Kuhn-Tucker theorem /9/. 
The well-known conjugacy conditions 

(1.20) 
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must be fulfilled at instant ti, where the superscripts plus and minus denote the values of 
II, and Hfrom the left and from the right, respectively, of the point tl. The conjugacy con- 
ditions for tz are analogous of (1.20) written for h = 0. From z,,+i(T) = 0 and from the con- 
tinuity and continuous differentiability with respect to sER of function g it follows that 

f *+,, and hence H, are functions that are continuous and continuously differentiable with re- 
spect to r6~ R; also, 6") = 0 on Q1. It is evident that if we take g") = g in (1.9), then 
the quantity z=+i(T) equals integral (0.1); therefore, the (n +l)st component of q0 plays 
the same role in (1.14) as K does in (0.1). Thus, the original problem is reducedtosolving 
the following multipoint boundary-value problem: find u, v, x, Xn+l,$‘, Y, ht h, k? by simultaneously 
solving the systems of differential and algebraic Eqs.(1.2), (1.9), (1.12), (1.15) with (1.17) 
under conditions (l.lO), (l.ll), (1.19), (1.20) and G(x,t,) = 0. It is assumed here that a 
nonzero vector-valued function $", h+O and a vector vsatisfying conditions (1.19) exist. 

Multiplier method. The method of Lagrange multipliers can be used to solve problem 
(l.l)-(1.4). For this we select j from set Mand we set up this problem's Hamiltonianinthe 
form 

H = qf + v’p on Qo, H = +f + pj 8’ + vq on Q1 

$ = (b . . ., %A f = (fo, . . *t fn) 
(1.21) 

which on Q,, U Q1 is continuous and continuously differentiable with respect to se R since f 

and g(j) are continuous and continuously differentiable with respect to SER. Consequently, 
the vector-valued function $ can be determined from the system 

(1.22) 

Q = 0 

with the use of (1.20). Conditions (1.16)- (1.19) also remain in force here. Problem (l.l)- 
(1.4) with Hamiltonian Hdefined by (1.21) and with j =p was considered in /5/. 

If we compare the solutions of problem (1.1)~-(1.3) and (1.8) for j and j f i,wecanprove 
the validity of the conditions 

+p) = qp+l) + pj+l e, i=l,...,n 

pj=-t!$L, j=l,...p-1 

where Ipt") and $,,(j'l) are the solutions of system (1.22) when go) and .@+r), respectively, are 
introduced into consideration and p, and P,+~ are the Lagrange multipliers when g(j) and go*') 
are in expression (1.21). From the Legendre -Clebsch condition follows 

(1.25) 

while from the condition of the maximum of (1.21) with respect to u follows 

pLp 62) = 0 
(1.26) 

Taking (1.24) and (1.25) into account , we can note that in the general case 

ILj C&J Z 03 vi E Jf \ P 

The proposed method for taking (1.4) into account, having a number of features in common with 
the method presented in /4/, differs from it in that the vector Gin (1.8) has the dimension 
j = p, while j< p in /4/, and Q,,;f@ in (1.21), but Q0 ==@J in /4/. 

2. Problems with constraints on the control's rate of variation. We exanline 
three problems with constraints on the control's rate of variation, indirectly related withthe 

problem studied in Sect-l. When solving them we use the well-known method of allowing for two- 
sided constraints on the control parameter /3,10/, augmented by the requirement of sign-defini- 

teness of the Lagrange multipliers. 

Problem 1. Minimize 
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under constraints (1.2). (1.3) and 

We denote 

(2.2) 

(2.3) 

then (2.2) can be represented as Iz I<<a which can be replaced by the equality 

F = 0, F I uz - 22 - pz (2.4) 

with the aid of a parameter p. As a result we have to minimize (2.1) with respect to us, z, 
p, s = 1,. . .,m, sf j , under conditions (2.4), (1.2), (1.12). This system's Hamiltonian can be 
written as 

,_ H = Q”p + v’p + pF 

where fn+r= z, p is the Lagrange multiplier. Using H, the system adjoint to (1.2), (1.11) and 
(2.3) can be written as 

${ = 0, $' = -t?Hl&q, i = 1, . . ., n (2.5) 

II, ,+; = -3HiaUj (2.6) 

From the maximum condition for Hamiltonian H, in addition to (1.16) and (1.17) we obtain 

ma2 = B+~ - 2~2 = 0, awap = pp =w (2.7) 

$,,+l>O when z=a, I#,,+~< 0 when z = -a (2.8) 

From (2.7) and (2.8) follows 

p>O, if IzI=a,p=O, if -a<zQa (2.9) 

Equations (2.6) and (2.7) are of particular interest in Problem 1. When z is inside the ad- 
missible domain during some interval, i.e., p#O,p = 0, then from (2.7) it follows that *n+l = 
0 on this interval, and, consequently, $,+r'= 0. In this case, from (2.6) wehave aHfauj = 0, 
whence ui is determined by the usual scheme. However, when Iz 1 = a, then p = 0, p>O and uj 
and p are determined from (2.3) and (2.7), respectively. Also, if condition (2.9) is fulfil- 
led, then 1 z 1 = a is a solution; if not, the solution should be sought within the admissible 
domain. From (2.7) and (2.9) and from the condition $,,+r(z)# 0 when u](r) has been fixed or 
qn+r (Z) = 0, otherwise, (Z = 0, T), follows p (7) > 0, 1 z (z) 1 = a when u has been fixed or 

p (r) = 0, -a<z(r)< a , otherwise. 

Problem 2. Problem 2 differes from Problem 1 in that here we introduce, insteadof (2.2) 
the inequality (b is a prescribed number) 

We denote 

(2.10) 

(2.11) 

I 

The last equation in (2.11) is added on to system (1.2), thanks to which, as well as to (l.ll), 
the dimension of the phase space becomes equal to n + 2; also, for vwe take the left and 
right ends to be free. Then constraint (2.10) can be presented as: 1 p I< b or F, = b’- p”- 
y* = 0, where y is the additional control parameter. This problem's Hamiltonian is (pz is a 
Lagrange multiplier) 

H = rl"f= + vOmo + Q, 

f,+r = B, cp" = (cpo, cp), v" = (Yo, v) 
(2.12) 

For Problem 2 the adjoint equations of the Hamiltonian system are 

aa 
$0 =o, 4% =--q, izl,..., aa 

n; h1 = - T 

From the maximum condition for (2.12), together with (1.16) and (1.17), we have 
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(2.14) 

%l > 0 when B = 6; $*+I < 0 when @ = -b (2.15) 

From (2.14) and (2.15) we obtain pL1> 0, if ]p 1 = b; pl= 0, if --b<p<b. When p1 = 0, fl is 
found inside the admissible domain, while from (2.14) and the last equation in (2.13) we have 

9 *+r = 0, dH/dV = 0, Yg = 0 

However, if pl> 0, l/3 I = b; then ~0 # 0, and YO is determined from the condition that the 
equality cpO = 0 is fulfilled, in which Vis computed from the last equation of (2.11). Note 
that in this problem $*+r (0) = $,,+l(T) = 0 since the variable Scan be examined with free ends. 

Problem 3. In this problem, instead of inequality (2.2) (Problem l), we examine the 
equality {i(t) is a prescribed function of time) 

We denote 

d T 
dt z: 

Uj = l(t), T < m (2.16) 
+I 

Then (2.16) takes the form 

Y = I (t) (2.17) 

Equation (2.17) is added on to system (1.2) and Q = 0 is introduced as an additional constr- 
aint. Here too the variable 1'is introduced with free ends. On the strength of this the 
Hamiltonian for Problem 3 can be written thus 

H = *Of” + YY$ (2.18) 

U'ntx = l (t), 1p" = (cpo, cp), v0 = (VOl v)) 

For this problem the necessary conditions for the maximum of Hare analogous to Eqs.(l.l6) and 
(1.17), while the adjoint system is analogous to system (2.13), and 

~nt1==. 
aH 

-dV =--vo, %a+1 (0) = %+I 67 = 0 

We remark that the constant of integration, obtained when solving Eq.(2.17), must be deter- 
mined from the condition &+1(T) -0. Note that constraint (2.16) can be accounted for in the 
same way. From (2.17) we obtain t 

v = L (f) + c, L (t) se l 2 (t) dt 

0 

where the integration constant C is a parameter in this case, thanks to which Problem 3 is re- 
duced to a parametric problem. 

3. Example. Find the control u(t) minimizing the functional 
1 

I=+ Gdt 
s 

(3.1) 

" 

under the constraints 
Z1' = x,, r’, = lb, 2" = (0,1), IT = (0, -1) (3.2) 

g (=J = Y(I) - d < 0, d <% (3.3) 

This example is taken from /5/ where the exact solution was obtained by introducing G(t,tJ= 0 
and g@)(u) = 0 on [tl, &], where p = 2 for constraint (3.3). This simple example is of interest 
because by it we can easily show that the usual method of integral penalty functions, as well 
as other methods based on the direct inclusion of g(x,t)=Oin any form in the target function- 
al, for taking (3.3) into account, are not suitable. As a matter of fact, if constraint (3.3) 
is taken into account, say, by using the equality 

cp = LJz+ g (z,) = 0 (3.4) 
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then the Hamiltonian for the example being examined can be written as 

while the adjoint system has the form (y is the additional control parameter) 

From the maximum condition for (3.5) we obtain 

From (3.8) follows 

aH/au = +%-u = O,rp, = II 

aHlay = hy = 0 

(3.7) 

(3.8) 

h#O,y=O; h=O,y#O; a=o,y=o (3.9) 

Since y#O on [O,t,] and [~~,I'], h=O; consequently, *,=const on these intervals. However, y=O 
on [tl, trl , i.e. , g (zl) = 0, z1 = d, zi’ = 2% = 0, sp’ = Y = 0. But when y= 0, according to (3.g), h#O 
or h=O. If h#O, then from (3.6) it follows that &+O on (t1, tsl i consequently, U # 0, 
z,#Oand zi #d. In other words, condition (3.3) cannot be ensured for any nonzero h. However, 
if a= 0, then $I~= conston [O,T] and rpz in the general case is a linear time function, which 
again does not ensure the fulfillment of (3.3). 

We remark that problem (3.1)- (3.3) was solved by use of penalty functions in the usual 
manner, i.e., without the introduction of condition (1.8). When solved thus the following 
picture is observed. As the penalty function's coefficient increased, the phase trajectory 
contracted to the boundary of the admissible domain, while the right end in the phase traject- 
ory essentially receded from the point zT=(O,--1). However, when the conditions on the right 
end were retained, constraint (3.3) was not fulfilled for any coefficients of the penalty 
functions. All of this again confirms the necessity of introducing condition (1.8). 

For the example at hand condition (1.8) has the form 

(3.10) 

g(j) = 0, t E Ill, tJ, j E M = {i, 2) 

In problem (3.1)- (3.3) constraint (3.3) should be taken into account, as noted above, by in- 
troducing into consideration (3.10) and either g(l)= 0 or g @)= 0. Problem (3.1)- (3.3)was stud- 
ied in /5/ with the aid of (3.10) and g@)=O; therefore, here we give the solution with the 
introduction of the condition g(l)= 0 on the interval [tl,tp]. For problem (3.1)- (3.3), when 
(3.3) is accounted for by using (3.10) and g(')=z,=O, the Hamiltonian can be written as 

1 
H = -2_Jlo~~+Ol~a+ %u + M(B)g (1) (3.11) 

The adjoint system is 
00 = 4 $1 = con% %' = -(% + I@ (g)) 

Condition (3.7) remains in force when lfis defined by (3.11). With due regard to the conjug- 
acy conditions (1.20) and (1.21) we obtain the following solution of problem (3.1)-(3.3) 

p1 = --ql on ItI, d 

I 
2 

gdz* tEPJ,3d] 
a= 2 

-F’ t=E411 

&(I-&), fE[O,3d] 

$a = 1 7_(, O&t), tE[3d*1-w 
tE[l-3d.i] 

The expressions for z1 and I, are analogous to those obtained in /5/. 
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