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ON THE SOLUTION OF OPTIMIZATION PROBLEMS WITH CONSTRAINTS

S.V. SHAKHVERDIAN

In the development of the method of integral penalty functions methods are proposed
for solving optimization problems for dynamic systems with high-order constraintson
the phase coordinates, Necessary optimality conditions in the form of a maximum
principle are obtained for optimization problems with constraints of different forms
on the control rate.

At the present time one of the basic methods for solving optimization problems for dynamic
systems with constraints on the phase coordinates is the method of integral penalty functions,
which, for example, leads to the adding on of the integral /1~3/

0, if gxo

1, if g>0 (0.1}

K§E<g>g‘-'dt. E(g;={
4]

to the performance index in order to take into account inequalities of type g(z, ) <0. Here
z is the system's state vector, K is the penalty coefficient, 7 is the end of the control
period. Note that the optimization problem for dynamic systems with constraints on the phase
coordinates has not been solved in the general case by means of introducing integral (0.1).
This is connected with the fact that at the instant # a phase trajectory reaches the boundary
of the admissible domain the dexivative of the integrand in (0.1l) with respect to the phase
coordinates equals zero, by virtue of which the adjoint variables cf the Hamiltonian system
are always continuous. Meanwhile it is known that in the general case these variables must
undergo discontinuities at instant 4 /4—6/, in particular, when the order of the constraint
g{z, ) <0 is higher than first. (Here and everywhere below, by the order of a constraint is
meant the orxder of the smallest time derivative of g{z, #) containing the control parameter). In
addition, and this is more important, the direct inclusion of ¢£(z,4 in any form in the target
functional does not ensure that the phase trajectories lie in the admissible domain in the
general case, i.e., the constraint g{z, #) <0 is not sustained; this will be shown later. If the
constraint g(z,1) <0 is taken into account by adding on the integral

T
SaYdt, Y=y»4+egt)=0 (0.2)
0

to the perfoxmance index (2 is a Lagrange multiplier, y is the additional control parameter),
then it can be proved that the method of integral penalty functions is equivalent to the method
based on the direct introduction of gz, ¢ into the form (0.2), called the multiplier method.
(Two methods are said to be equivalent if the solution sets obtained by their use either co-
incide or are both empty). As a matter of fact, from the extremum of the target functional
with respect to y follows a=0on Q,={t:E(g) =0}, as~00on Q= {t:E (g =1}. Therefore, the

equality

T T
at = =
§aY t §a£(g}gdt ¢

is valid. Consequently

T
1
TKSE(g)g*dt:O
0
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616 S.V. Shakhverdian

whence a=1/,Kg as ¢— 0, which proves the equivalence of the two methods. The optimal control
problem with a constraint of form |u'[< e which is analyzed in the present paper togetherwith
others, was studied in /7/, where w is the rate of change of the scalar control u and a is a
prescribed number. The constraint |u' |<a was taken into account in /7/ by introducing u among
the phase cocrdinates and using u as the control parameter. The solution obtained in /7/ is
incomplete since from it does not follow the solution inside the admissible domain of varia-
tion of uwand . Methods are proposed below for solving the optimization problems for dynamic
systems with constraints on the phase coordinates and on the control rate, that are free of
the above-mentioned defects.

1. Problem with phase constraints. For simplicity of exposition we assume that
the phase trajectory reaches the admissible domain's boundary just once and remains on it over
the interval li, ] and that there is only cne pth-order constraint of type g (z, ) <{ 0. Under
these assumptions we consider the standard optimal control: minimize

T
1={folwut)a (1.1)
b
under the constraints
£ =f(z,ut), 20 =2, z(I)=azaT (1.2)
u(itye U= {u: gu) <0} (1.3)
() ER = {a: g (x, t) <0} (1.4)

where z is an n-dimensional continuous phase vector having continuous derivatives with respect
to ! everywhere except at a finite number of points, u is an m-dimensional piecewise-contin~
uous control vector, ¢ is, in the general case, a n-dimensional function on U, continuous
and continuously differentiable with respect to u, n <{ 2m, g is a scalar function on R X U,
continous and continuously differentiable up to order p with respect to z and %, and f is an

n -dimensional vector-valued function. The functions f, and f are assumed continuous and
continuously differentiable with respect to £ and uon R x U.

To prove the necessity of introducing tangential constraints /5/ independently of the
method of accounting for g(z,t) =0 on @, as well as the assertion that the direct inclus-
ion of only g(z,¢) in any form in the target functional does not ensure constraint (1.4), we
consider the method of the extended phase space. It is based o augmenting (1.2) with the

system . .
2y —y2 =0, ¥ —Ys=0,..., W g ut)=0 (1.5)

with right end conditions
byt g e =0,...,ly+ 7V dr=0 (1.6)
The solution of system (1.5) with conditions (1.6) has the foxrm /8/
yt g ) =0, yn+gd =0, gr=dg/d, j=1,...p—1 (1.7)

From (1.7) we see that if y, (f) is a real variable everywhere on [0, T], we can ensure the ful-
fillment of the condition g(z,t) <0 on [0, 7] by adding on system (1.5) with condition (1.6)
to system (1.2). BHBowever, from (1.7) it does not follow that
y2 () >0, Viel[0, Tl

Consequently, as a result of the introduction of (1.5) with (1.6) the inequality g(z,?) <0
cannot be observed in the general case.

From (1.5) we see that for the equality y, () = g (z, ) = 0 to hold on [#, %] it is neces-
sary and sufficient to ensure the fulfillment of the following conditions:

ys ) =0, seM={,...,p} vyw@&) =0 j=1,...,p
or
£z, u, ) =0, s=M, G@th) =g t), gV t), ..., 89V (z, ) =0 (1.8)

g (z, u, 1) {:0, if seM\p
ou #0, if s=p
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Note that the solving of problem (1.1)~ (1.4) with the introduction of system (1.5) and con-
dition (1.6) is essentially equivalent to the solving of problem (1l.1)— (1.3) with (0.2), and,
consequently, with (0.1). Thus, the methods of integral penalty functions, of multipliers,
and of the extended phase space are equivalent, and to take (1.4} into account it is necessary
to introduce the second condition of (1.8) into any of them.

Method of integral penalty functions. oOn the strength of the above the original
problem (1.1)— (1.4) must be replaced by the following one: minimize (l.1) under constraints
(1.2), (1.3) and (1.8). If the method of integral penalty functions is applied to this problem,
then the penalty function must be introduced with the aid of the following equation with bound-
ary conditions

Tn1= —;— E(@) (g9 =fan(z,u,t), jEM (1.9)

T
o1 (0)=0, 2na ()= | B () (gPPdt =0 (1.10)
0

where E(g) is defined as in (0.l). It is evident that to account for (1.4) it is necessary
to bring into consideration, besides (1.9) with (1.10), the second condition in (1.8), since
independently of the means of accounting for g (z,u,t) =0 the condition G (z,#) =0 must al-
ways be fulfilled.

We d t
¢ denote 2 =fo @ u ), T (0) =0, zo(T) =1 (1.11)

=qu+v:t=0 i=1..,=n (1.12)

where v; is an additional control parameter enabling us to allow for (1.3) in the form of the
equality (1.12). Then problem (1.1)— (1.4) can be stated thus: it is necessary to find vector-
valued functions u and v which minimize

I* =T+ A6 (z, 1) (1.13)

under constraints (1.2) and (1.9)—(1.12), where A is a p-dimensional row vector and G'is a
p -dimensional column vector; the prime denotes transposition. The Hamiltonian for this
problenm is

H =9 +v¢ (1.14)
fo = (foy EEERER] fn+1)f q) = (‘pla .y (Pﬂ)» ‘po = (1Po7 rey 'q’m»l)
v=1_(v, ..., Va)

where ¢° is an n + 2-~dimensional adjoint vector and v is a = -dimensional vector-valued
Lagrange multiplier.

The system adjoint to (1.2), (1.9) and (1.1) can be written, using the Hamiltonian, as

Yo =0, ¢ = —3H/dz), Yoy =0, i=1,...,n (1.15)
From the maximum condition for (1.14) we have
%=~p°—g£—° v%= (1.16)
oH/dv = v =0 (1.17)
From (1.17) follows
v=0 v%0; v£0, v=0 v=0, v=0 (1.18)

Conditions (1.18) are essentially weak, which is due to the reduction of inequality (1.3) to
equality (1.12). As a rule, because of the weakness of conditions (1.18) a cycling of the
iteration procedure arises; therefore, (1.18) need strengthening. In this connection the
validity of the conditions

v>0 v=0 v=0, v+0 (1.19)

can be proved by use of the Kuhn—Tucker theorem /9/.
The well-known conjugacy conditions

=y =24, =0 om (=), =0

ot
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must be fulfilled at instant ¢, , where the superscripts plus and minus denote the values of
Y and H from the left and from the right, respectively, of the point #. The conjugacy con-
ditions for t, are analogous of (1.20) written for A = 0. From 4 (T) =0 and from the con-
tinuity and continuous differentiability with respect to z & B of function g it follows that
fa+1» and hence H, are functions that are continuous and continuously differentiable with re-
spect to z & R; also, g" =0 on Q1. It is evident that if we take g = g in (1.9), then
the quantity zn4 (T) equals integral (0.1); therefore, the (n + 1)st component of ° plays
the same role in (1.14) as K does in (0.1). Thus, the original problem is reduced to solving
the following multipoint boundary-value problem: find u, v, &, Zai1, ¥ Vs A I &2 by simultaneously
solving the systems of differential and algebraic Egs.(1.2), (1.9), (1.12), (1.15) with (1.17)
under conditions (1.10), (1.11), (1.19), (1.20) and G(z,¢t) =0. It is assumed here that a
nonzero vector-valued function Y°, A= 0 and a vector wvsatisfying conditions (1.19) exist.

Multiplier method. The method of Lagrange multipliers can be used to solve problem
(1.1)-(1.4). For this we select j from set Mand we set up this problem's Hamiltonian in the

form ;
H=v9f+vp on Qu H =1+ p;8"+vp on ¢ Lo
b = Cbor - - s Buds = Cor - - o1 fo) (.21
which on Qg |J @, is continuous and continuocusly differentiable with respect to z & R since f

and g are continuous and continuously differentiable with respect to z & R. Consequently,
the vector-valued function Y can be determined from the system

, 9 , of gl
‘17:‘—‘\’% on Qm'tp-————(wp-a;:—\—p,j g’1> on @y (1.22)

w =0

with the use of (1.20). Conditions (1.16)— (1.19) also remain in force here. Problem (l.1)—
(1.4) with Hamiltonian H defined by (1.21) and with j = p was considered in /5/.

If we compare the solutions of problem (1.1)—(1.3) and (1.8) for j and j + 1,we can prove
the validity of the conditions

92D

¢§5)=¢§j+l)+ﬂi+l':—,,‘" i=1,...,n (1.23)
1
ap, R
pjz__d_ft*_’., j=1...p—1 (1.24)

where ;) and P9 are the solutions of system (1.22) when g#» and gi*), respectively, are
introduced into consideration and p; and pg are the Lagrange multipliers when g ana gl
are in expression (1.21). From the Legendre—Clebsch condition follows

i

. d
(—1y d:;” <0, j=1,...,p (1.25)

while from the condition of the maximum of (1.21) with respect to u follows
pp (t2) = 0 (1.26)
Taking (1.24) and (1.25) into account, we can note that in the general case
pi(t) =0, V=M \p

The proposed method for taking (1.4) into account, having a number of features in common with
the method presented in /4/, differs from it in that the vector G in (1.8) has the dimension
j=p, while j<{p in /4/, and Q,5= ¢ in (1.21), but @ = ¢ in /4/.

2. Problems with constraints on the control's rate of variation. we examine
three problems with constraints on the control's rate of variation, indirectly related with the
problem studied in Sect.l. When solving them we use the well-known method of allowing for two-
sided constraints on the control parameter /3,10/, augmented by the requirement of sign-defini-
teness of the Lagrange multipliers.

Problem 1. Minimize

I="\tolz,u,t)dt (2.1)

Oty ™y
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under constraints (1.2), (1.3) and

luf | <a (2.2)
We denote
uf =z (2.3)

then (2.2) can be represented as |z |<{a which can be replaced by the equality

F=0, F=a*—2—p (2.4)
with the aid of a parameter p. As a result we have to minimize (2.1) with respect to 1u, 3z,
p, s=1,...,m, s}, under conditions (2.4), (1.2), (1.12). This system's Hamiltonian can be

written as

H =4 + vp -+ uF

where fp+; = %, W is the Lagrange multiplier. Using H, the system adjoint to (1.2), (1.1l) and
(2.3) can be written as

Yo =0, ¢ = —0H/dz;, i=1,...,n (2.5)
Yty = —OH/0u; (2.6)

From the maximum condition for Hamiltonian H, in addition to (1.16) and (1.17) we obtain
OH/0z = P4y — 2pz = 0, 0H/3p = pp ="0 (2.7)
Yr+1 > 0 when z=2a, Pn; <0 when z= —a (2.8)

From (2.7) and (2.8) follows

p>0 if |z|l=a p=0, if —a<{z<a (2.9)
Equations (2.6) and (2.7) are of particular interest in Problem 1. When z is inside the ad-

missible domain during some interval, i.e., p% O,p = 0, then from (2.7) it follows that Py =
0 on this interval, and, consequently, 4, = 0. In this case, from (2.6) we have 8H/u; =0,
whence u; is determined by the usual scheme. However, when [z]=ga, then p=0, p >0 and u;
and pu are determined from (2.3) and (2.7), respectively. Also, if condition (2.9) is fulfil-
led, then |z | = e is a solution; if not, the solution should be sought within the admissible
domain. From (2.7) and (2.9) and from the condition 4 (t) % 0 when u; (r) has been fixed or
Ynsp (t) = 0, otherwise, (v=0,7T), follows p(t)>0,]z(1)| =a when u has been fixed or
p@)=0 —a<{z(t)<<a, otherwise.

Problem 2. Problem 2 differes from Problem 1 in that here we introduce, insteadof (2.2),
the inequality (b is a prescribed number)

s

I
EA

HIT] ”"]<b (2.10)

We denote
m m
V~_—j§1uj, q]0=V—j§Jluj=0, V’:ﬁ (2‘11)

The last equation in (2.11) is added on to system (1.2), thanks to which, as well as to (1.11)
the dimension of the phase space becomes equal to n + 2; also, for V we take the 1left and
right ends to be free. Then constraint (2.10) can be presented as: |B|< b or F, = p* — B2 —
y? = 0, where ¥y is the additional control parameter. This problem's Hamiltonian is (u; is a
Lagrange multiplier)

-

H=%P + v + wh

o o (2.12)
.fn+1 = ﬁ’ P = (‘Po, q))’ Vo= (‘Vo, ‘V)
For Problem 2 the adjoint equations of the Hamiltonian system are
. . aH . )
1Po=0, \P{=— 3z, ' l=1)"'yn; \pn+1=_‘—aT (2.13)

i

From the maximum condition for (2.12), together with (1.16) and (1.17), we have
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I'D
"
2
I
I
3

4 o8
—56"=¢7L+1W2l"15=07 v = (2.14)
Ynsy 2> 0 when § =058 Yoy <O when B = —b (2,15)
From (2.14) and (2.15) we obtain >0, if [B|=104pu =0,if —bP<h When py =0, B is
found inside the admissible domain, while from (2,14_) and the last equation in (2.13) we have

Ppe1 = 0, GH/GV =0, v, =0

However, if u; >0, |Bl="5; then v %0, and v is determined from the condition that the
B en and determined from the condition that the
equality qg = 0 is fulfllled, in which V is computed from the last equation of (2.11). Note

that in this problem pnsy (0) = 4y (I) = 0 since the variable V can be examined with free ends.

Problem 3. 1In this problem, instead of inequality (2.2) (Problem 1), we examine the
equality {{(t) is a prescribed function of time)

d

=t
We denote
T
CDg:V_. E s
=
Then (2.16) takes the form
V=i{ (2.17)
Equation (2.17) is added on to system (1.2) and @, == 0 is introduced as an additional constr-
aint. Here too the variable Vis introduced with free ds. On the st ength of this the

Hamiltonian for Problem 3 can be written thus
H = §°f° + v°¢° {2.18)
(i =1(t), " = (g0, 9)y V' = (vo, V)

For this problem the necessary conditions for the maximum of H are analogous to Egs. {1.16} and
{1.17), while the adjoint system is analogous to system (2.13), and

P4y == —'%L==“"Vo; Pasp (0) =Ppsy () == 0

We remark that the congtant of integration, obtained when solving Eq. (2.17), must be deter-
mined from the condition ¥ny (7)== 0. Note that constraint (2.16) can be accounted for in the

same way. From (2.17) we obtain .

V=L, L(t)agl(t)dt

¢

where the integration constant ¢ is a parameter in this case, thanks to which Problem 3 is re-

ueed to a parametric problem

QL O a paramn prellen.

3. Example. Find the control u(#) minimizing the functional

1
- S wide (3.1)
u
under the constraints
o' =z 2= u, 2= (0,1), 2T = (0, —1) (3.2)
gl =2 {) —d<<0, d<TVs (3.3)

This example is taken from /5/ where the exact solution was obtained by introducing €z, 4) =0
and g®u) =0 on [#, 4], where p= 2 for constraint (3.3). This simple example is of interest
because uy it we can t:ab.LJ.y show that the usual method of intsgral ycualuj’ functions, as well
as other methods based on the direct inclusion of g(z, ) =01in any form in the target function-
al, for taking ({3.3) into account, are not suitable. As a matter of fact, if constraint (3.3}

T [ P I

is taken into account, say, by using the equality

=yt glzr) =0 (3.4)
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then the Hamiltonian for the example being examined can be written as
1
=5~ bou? + P17s + Pau + A9 (3.5)
while the adjoint system has the form (y is the additional control parameter)

)

Yo=—1, ‘P1'=—'7~‘0_11‘- Yy =—14 (3.6)
From the maximum condition for (3.5) we obtain
AHjgu =P, —u=0,%;,=1u (3.7)
0HJdy = Ay =0 (3.8)
From (3.8) follows
A0, y=0 A=0,y+%0 A=0,y=0 (3.9)

Since y#0 on [0,4] and [, T}, A =0; consequently, ¥, = const on these intervals. However, y=10
on [tytsl, i.e., gz)=0,2,=d,z,"=2,=0,2"=u=0 But when y=0, according to (3.9), r=z0
or A=0. If A=0, then from (3.6) it follows that ,%0 on [t, t;] ; consequently, wu=0,
zaF0and z;#d. In other words, condition (3.3) cannot be ensured for any nonzero 3. However,
if A =0, then ¥;=conston [0, 7] and %, in the general case is a linear time function, which
again does not ensure the fulfillment of (3.3).

We remark that problem (3.1)— (3.3) was solved by use of penalty functions in the usual
manner, i.e., without the introduction of condition (1.8). When solved thus the following
picture is observed. As the penalty function's coefficient increased, the phase trajectory
contracted to the boundary of the admissible domain, while the right end in the phase traject-
ory essentially receded from the point z? = (0, —1). However, when the conditions on the right
end were retained, constraint (3.3) was not fulfilled for any coefficients of the penalty
functions. All of this again confirms the necessity of introducing condition (1.8}.

For the example at hand condition (1.8) has the form

o = Ix—d” -0 (3.10)
2 hh
=0ty 6,18 M= (1,2
In problem (3.1)— (3.3) constraint (3.3) should be taken into account, as noted above, by in-

troducing into consideration (3.10) and either gV =10 or g% =0. Problem (3.1)— (3.3)was stud-
ied in /5/ with the aid of (3.10) and g® = 0; therefore, here we give the solution with the
introduction of the condition g =0 on the interval [4,1). For problem (3,1)—(3.3), when
(3.3) is accounted for by using (3.10) and &=z, =0, the Hamiltonian can be written as

1
= 5 Yout fuza + hau + IE () gV (3.11)
The adjoint system is
Yo = —1, P, = const, $y' = —(p, + W F (&)
Condition (3.7) remains in force when K is defined by (3.11). With due regard to the conjug-
acy conditions (1.20) and (1.21) we obtain the following solution of problem (3.1)— (3.3)

Bp=—%; on [l
2
Baz + t=I[0,34)
Y= 5
— gz t=(3d, 1]
2 t
¥ 1--3;), t < [0, 3d)
by = 0, t < [3d, 1 — 3d)

(-5, ten—wm

The expressions for gz, and iz, are analogous to those obtained in /5/.
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